Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 155, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538986

RESUMO

The prostate is a vital accessory gonad in the mammalian male reproductive system. With the ever-increasing proportion of the population over 60 years of age worldwide, the incidence of prostate diseases, such as benign prostatic hyperplasia (BPH) and prostate cancer (PCa), is on the rise and is gradually becoming a significant medical problem globally. The notch signaling pathway is essential in regulating prostate early development. However, the potential regulatory mechanism of Notch signaling in prostatic enlargement and hyperplasia remains unclear. In this study, we proved that overactivation of Notch1 signaling in mouse prostatic epithelial cells (OEx) led to prostatic enlargement via enhancing proliferation and inhibiting apoptosis of prostatic epithelial cells. Further study showed that N1ICD/RBPJ directly up-regulated the androgen receptor (AR) and enhanced prostatic sensitivity to androgens. Hyper-proliferation was not found in orchidectomized OEx mice without androgen supply but was observed after Dihydrotestosterone (DHT) supplementation. Our data showed that the number of mitochondrion in prostatic epithelial cells of OEx mice was increased, but the mitochondrial function was impaired, and the essential activity of the mitochondrial respiratory electron transport chain was significantly weakened. Disordered mitochondrial number and metabolic function further resulted in excessive accumulation of reactive oxygen species (ROS). Importantly, anti-oxidant N-Acetyl-L-Cysteine (NAC) therapy could alleviate prostatic hyperplasia caused by the over-activation of Notch1 signaling. Furthermore, we observed the incremental Notch signaling activity in progenitor-like club cells in the scRNA-seq data set of human BPH patients. Moreover, the increased number of TROP2+ progenitors and Club cells was also confirmed in our OEx mice. In conclusion, our study revealed that over-activated Notch1 signaling induces prostatic enlargement by increasing androgen receptor sensitivity, disrupting cellular mitochondrial metabolism, increasing ROS, and a higher number of progenitor cells, all of which can be effectively rescued by NAC treatment.


Assuntos
Hiperplasia Prostática , Animais , Humanos , Masculino , Camundongos , Androgênios/metabolismo , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Próstata/metabolismo , Hiperplasia Prostática/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais
2.
Food Funct ; 14(14): 6730-6744, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37409688

RESUMO

Endometriosis is an estrogen-dependent chronic inflammatory gynecological disease defined by the presence of endometrial glands and mesenchyme outside the uterine cavity, named ectopic endometrium. Recent studies showed that endometriosis is associated with hormone imbalance, inflammation and oxidative stress. As the main component of vanilla bean extract, vanillin is widely used as a flavoring agent in the food, pharmaceutical, and cosmetic industries. It is known for its anti-inflammatory, antibacterial, and antitumor properties, but its therapeutic efficacy in endometriosis has not been studied. In this study, we evaluated the roles of vanillin in this disease using an induced endometriotic mouse model. The results showed that vanillin significantly inhibited the growth of endometrial lesions. Compared with the control group, the weight and volume of lesions were reduced considerably in the vanillin-treated group, showing its fantastic ability to inhibit cell proliferation and promote apoptosis. In addition, in the treatment group, mRNA expression of the pro-inflammatory cytokines Tnfa, Infg, Il1b, and Il6 was reduced, the number of macrophages and neutrophils was decreased, and the NF-κB signaling pathway was inhibited, indicating that vanillin suppressed the inflammatory response in the ectopic endometrium. Besides, we found that the intensity of tissue reactive oxygen species (ROS) was significantly lower, and mitochondrial complex IV expression was reduced in the vanillin-treated group. Meanwhile, treatment of the immortalized human endometriotic epithelial cell line (11Z) with vanillin resulted in the downregulation of cyclin genes that drive the cell proliferation process, inhibited cell proliferation, promoted apoptosis, and downregulated the expression of LPS-induced inflammatory cytokines. Most importantly, our data showed that the vanillin treatment had only minimal effects on the eutopic endometrium with respect to the pregnancy process, indicating its safety to be used in treating endometriosis in adults. In conclusion, our data suggest that vanillin has potential therapeutic properties for endometriosis as a regulatory molecule of cell proliferation, apoptosis, inflammation, and oxidative stress.


Assuntos
Endometriose , Adulto , Feminino , Animais , Camundongos , Humanos , Endometriose/tratamento farmacológico , Endometriose/genética , Endometriose/metabolismo , Antioxidantes/farmacologia , Inflamação/tratamento farmacológico , Preparações Farmacêuticas , Anti-Inflamatórios/farmacologia
3.
Entropy (Basel) ; 25(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37372262

RESUMO

In order to study as a whole a wide part of entropy measures, we introduce a two-parameter non-extensive entropic form with respect to the h-derivative, which generalizes the conventional Newton-Leibniz calculus. This new entropy, Sh,h', is proved to describe the non-extensive systems and recover several types of well-known non-extensive entropic expressions, such as the Tsallis entropy, the Abe entropy, the Shafee entropy, the Kaniadakis entropy and even the classical Boltzmann-Gibbs one. As a generalized entropy, its corresponding properties are also analyzed.

4.
FASEB J ; 37(7): e22983, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249327

RESUMO

In mammals, the endometrium undergoes dynamic changes in response to estrogen and progesterone to prepare for blastocyst implantation. Two distinct types of endometrial epithelial cells, the luminal (LE) and glandular (GE) epithelial cells play different functional roles during this physiological process. Previously, we have reported that Notch signaling plays multiple roles in embryo implantation, decidualization, and postpartum repair. Here, using the uterine epithelial-specific Ltf-iCre, we showed that Notch1 signaling over-activation in the endometrial epithelium caused dysfunction of the epithelium during the estrous cycle, resulting in hyper-proliferation. During pregnancy, it further led to dysregulation of estrogen and progesterone signaling, resulting in infertility in these animals. Using 3D organoids, we showed that over-activation of Notch1 signaling increased the proliferative potential of both LE and GE cells and reduced the difference in transcription profiles between them, suggesting disrupted differentiation of the uterine epithelium. In addition, we demonstrated that both canonical and non-canonical Notch signaling contributed to the hyper-proliferation of GE cells, but only the non-canonical pathway was involved with estrogen sensitivity in the GE cells. These findings provided insights into the effects of Notch1 signaling on the proliferation, differentiation, and function of the uterine epithelium. This study demonstrated the important roles of Notch1 signaling in regulating hormone response and differentiation of endometrial epithelial cells and provides an opportunity for future studies in estrogen-dependent diseases, such as endometriosis.


Assuntos
Progesterona , Útero , Animais , Feminino , Camundongos , Gravidez , Proliferação de Células , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Epitélio/metabolismo , Estrogênios/farmacologia , Estrogênios/metabolismo , Progesterona/farmacologia , Progesterona/metabolismo , Útero/metabolismo
5.
Ecotoxicol Environ Saf ; 241: 113826, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36068753

RESUMO

Endometriosis is a chronic, inflammatory, estrogen-dependent gynecological disease characterized by the growth of endometrial stromal cells and glands outside the uterine cavity in response to hormones, which commonly occurs in reproductive-age women. Zearalenone (ZEA) is a toxic metabolite produced by Fusarium, which acts as estrogen activity because of the similarity of its structure to estrogen. In this study, we used an endometriosis mouse model: 15 days after ovariectomy, endometrial fragments were sutured on the pelvic wall, and exogenous estrogen was supplied using an estrogen-releasing silicone tube embedded subcutaneously. Mice were treated with different doses of ZEA by gavage for 21 days. The results show that ZEA significantly inhibited the growth of ectopic endometrium in a dose-dependent manner. The proliferation of cells decreased while apoptosis increased in the ectopic tissues of ZEA-treated mice compared to the vehicle group. The expression of estrogen receptor-α and its downstream targets MUC1 and p-AKT decreased, indicating an impaired estrogen signaling activity by ZEA treatment. In addition, the decreased expression of pro-inflammatory cytokine Tnf-α, Il-1ß, and Il-6, the lower number of macrophages and neutrophils cells, and the inhibited NF-κB signaling pathway suggest the inflammatory response in the ectopic endometrium was also suppressed by ZEA treatment. However, when the exogenous estrogen supply is removed, ZEA, in turn, plays an estrogen-like role that promotes cell proliferation in the ectopic endometrium. In summary, our data suggest ZEA acts as an antagonist in endometriotic tissue when estrogen is sufficient but turns to estrogenic activity in the absence of estrogen in the development of endometriosis. ZEA also inhibits ectopic tissue growth by inhibiting inflammatory response in the endometriosis model.


Assuntos
Endometriose , Zearalenona , Animais , Endometriose/tratamento farmacológico , Endometriose/metabolismo , Endométrio/metabolismo , Estrogênios/metabolismo , Estrogênios/toxicidade , Feminino , Humanos , Camundongos , Transdução de Sinais , Zearalenona/toxicidade
6.
Front Cell Dev Biol ; 9: 702590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434930

RESUMO

High level of uric acid (UA) is the major origin of gout, and is highly associated with various pregnant complications, such as preeclampsia and gestational diabetes. However, UA's level and role in the very early stage of pregnancy has not been uncovered. This study aims to investigate the relevance of serum UA and decidualization, an essential process for the establishment and maintenance of pregnancy in women and mice during the early stage of pregnancy. In this study, we first proved that expression level of UA synthase xanthine dehydrogenase (XDH) is highly increased along with decidualization of endometrial stromal cells in both in vitro and in vivo models. Furthermore, serum and endometrial levels of UA are higher in mice with decidualized uterin horn and in vitro decidualized stromal cells. The existence of monosodium urate (MSU) crystal was also confirmed by immunostaining. Next, the roles of MSU on decidualization were explored by both in vitro and in vivo models. Our data shows MSU crystal but not UA enhances the decidualization response of endometrial stromal cells, via the upregulation of inflammatory genes such Ptgs2 and Il11. inhibiting of Cox-2 activity abolishes MSU crystal induced higher expression of decidualization marker Prl8a2. At last, in women, we observed enriched expression of XDH in decidua compare to non-decidualized endometrium, the serum level of UA is significantly increased in women in very early stage of pregnancy, and drop down after elective abortion. In summary, we observed an increased serum UA level in the early stage of women's pregnancy, and proved that the increased level of UA results from the expressed XDH in decidualizing endometrium of both human and mouse, leading to the formation of MSU crystal. MSU crystal can enhance the decidualization response via inflammatory pathways. Our study has uncovered the association between UA, MSU, and decidualization during the early stage of pregnancy.

7.
Biofactors ; 47(5): 852-864, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34320265

RESUMO

Fibrosis is a pathological process characterized by abnormal activation of fibroblasts with increased synthesis of extracellular matrix components, including collagens. It may lead to loss of proper tissue architecture and organ function in clinical diseases such as systemic sclerosis and liver fibrosis. Excess accumulation of collagens is considered the primary indicator of fibrosis. Notch signaling has been reported to be involved in the fibrosis of many different organs, including the liver. Our previous study showed that the uterine-specific over-activation of canonical Notch1 signaling in the mouse uterus (Pgrcre/+ Rosa26N1ICD/+ , OEx) results in complete infertility as a consequence of multiple developmental and physiological defects, together with increased collagen accumulation evidenced by Masson's staining. In this study, we further detected expressions of all 44 collagen genes in these Notch1 gain-of-function transgenic mice and found that 18 collagens have been largely affected. In another aspect, using an intrauterine adhesion model (IUA), we mimicked fibrosis in the mouse uterine. The results suggested that Notch receptors were upregulated only 3 days after induction, and most of the fibril-forming collagen began to upregulate 6 days after the surgery. Furthermore, when induced IUA in the N1ICD-OEx mice, the expression of collagens and fibrosis levels were significantly enhanced. At last, as a Notch signaling inhibitor, the γ-secretase inhibitor N-[N-(3,5-difl uorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) pretreatment could alleviate the expression of collagens and the symptoms of fibrosis. These results demonstrate that Notch signaling may play a role in upregulating collagens expression in endometrial fibrosis and might be a potential target of fibrosis therapy in the endometrium.


Assuntos
Colágeno/genética , Colágeno/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transdução de Sinais/genética , Útero/patologia , Animais , Modelos Animais de Doenças , Feminino , Fibrose , Camundongos , Camundongos Transgênicos , Útero/metabolismo
8.
Biol Reprod ; 104(3): 539-547, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33284968

RESUMO

The endometrium undergoes a pregnancy-delivery-repair cycle multiple times during the reproductive lifespan in females. Decidualization is one of the critical events for the success of this essential process. We have previously reported that Notch1 is essential for artificial decidualization in mice. However, in a natural pregnancy, the deletion of Notch1 (PgrCre/+Notch1f/f, or Notch1d/d) only affects female fertility in the first 30 days of a 6-month fertility test, but not the later stages. In the present study, we undertook a closer evaluation at the first pregnancy of these mice to attempt to understand this puzzling phenomenon. We observed a large number of pregnancy losses in Notch1d/d mice in their first pregnancy, which led to the subfertility observed in the first 30 days of the fertility test. We then demonstrated that the initial pregnancy loss is a consequence of impaired decidualization. Furthermore, we identified a group of genes that contribute to Notch1 regulated decidualization in a natural pregnancy. Gene ontogeny analysis showed that these differentially expressed genes in the natural pregnancy are involved in cell-cell and cell-matrix interactions, different from genes that have been previously identified from the artificial decidualization model, which contribute to cell proliferation and apoptosis. In summary, we determined that Notch1 is essential for normal decidualization in the mouse uterus only in the first pregnancy but not in subsequent ones.


Assuntos
Decídua/fisiologia , Regulação da Expressão Gênica/fisiologia , Prenhez , Receptor Notch1/metabolismo , Aborto Animal/genética , Animais , Proliferação de Células , Implantação do Embrião/genética , Feminino , Camundongos , Camundongos Knockout , Gravidez , Prenhez/genética , Prenhez/metabolismo , Receptor Notch1/genética , Transdução de Sinais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA